Studien rund um Kurkuma

Es gibt kaum eine andere Heilpflanze, zu der so viele Studien existieren wie zu Kurkuma bzw. dessen Inhaltsstoff Curcumin. Dabei werden diverse Indikationsgebiete aufgegriffen und untersucht, welchen gesundheitlichen Nutzen Curcumin erbringen kann.

Die Seite “mitunsgesund” gibt hier eine nützliche Übersicht, in welchen Bereichen die Studienlage besonders aussagekräftig ist: www.mitunsgesund.info/

Darüber hinaus werden beinahe täglich neue Studien, teilweise Labor- aber auch des Öfteren Humanstudien veröffentlicht. Anbei finden Sie eine Auflistung einiger relevanter wissenschaftlicher Studien, auf deren Aussagen sich diese Internetplattform stützt.

Abgerufen werden können alle Studien auf der Datenbank Pubmed: www.ncbi.nlm.nih.gov/pubmed Eingegeben werden sollten hier die Begriffe “Curcumin”, “Turmeric” oder “Curcuma longa”.

Anbei finden Sie die wichtigsten Studien, auf die sich die Aussagen dieser Website stützt.

(1) Vareed, S. K., Kakarala, M., Ruffin, M. T., Crowell, J. A., Normolle, D. P., Djuric, Z., & Brenner, D. E. (2008). Pharmacokinetics of curcumin conjugate metabolites in healthy human subjects. Pharmacokinetics of Curcumin Conjugate Metabolites in Healthy Human Subjects., 17(6), 1411–1417.

(2) Chainani-wu, N. (2003). Safety and anti-inflammatory activity of curcumin: A component of tumeric (curcuma longa). The Journal Of Alternative And Complementary Medicine, 9(1), 161–168.

(3) Alwi, I., Santoso, T., Suyono, S., Sutrisna, B., Suyatna, F. D., Kresno, S. B., & Ernie, S. (2008). The effect of curcumin on lipid level in patients with acute coronary syndrome. Acta Medica Indonesiana.

(4) Feng, D., Ohlsson, L., & Duan, R.-D. (2010). Curcumin inhibits cholesterol uptake in Caco-2 cells by down-regulation of NPC1L1 expression. Lipids in Health and Disease, 9, 40.

(5) Kim, M., & Kim, Y. (2010). Hypocholesterolemic effects of curcumin via up-regulation of cholesterol 7a-hydroxylase in rats fed a high fat diet. Nutrition Research and Practice, 4(3), 191–5.

(6) Quiles, J. L., Mesa, M. D., Ramírez-Tortosa, C. L., Aguilera, C. M., Battino, M., Gil, Á., & Ramírez-Tortosa, M. C. (2002). Curcuma longa extract supplementation reduces oxidative stress and attenuates aortic fatty streak development in rabbits. Arteriosclerosis, Thrombosis, and Vascular Biology, 22, 1225–1231.

(7) Akazawa, N., Choi, Y., Miyaki, A., Tanabe, Y., Sugawara, J., Ajisaka, R., & Maeda, S. (2012). Curcumin ingestion and exercise training improve vascular endothelial function in postmenopausal women. Nutrition Research, 32(10), 795–799

(8) Bradford, P. G. (2013). Curcumin and obesity. BioFactors (Oxford, England), 39(1), 78–87.

(9) Prathapan, a., Krishna, M. S., Lekshmi, P. C., Raghu, K. G., & Menon, a. N. (2012). Modulation of adipogenesis and glucose uptake by Curcuma longa extract in 3T3L1 and L6 cell lines – An in vitro study. Asian Pacific Journal of Tropical Disease, 2, 163–165.

(10) Zhao, J., Sun, X.-B., Ye, F., & Tian, W.-X. (2011). Suppression of fatty acid synthase, differentiation and lipid accumulation in adipocytes by curcumin. Molecular and Cellular Biochemistry, 351(1-2), 19–28.

(11) Ejaz, A., Wu, D., Kwan, P., & Meydani, M. (2009). Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice. The Journal of Nutrition, 139(5), 919–925.

(12) Pivovarova, O., Gögebakan, Ö., Klöting, N., Sparwasser, A., Weickert, M. O., Haddad, I., … Rudovich, N. (2012). Insulin up-regulates natriuretic peptide clearance receptor expression in the subcutaneous fat depot in obese subjects: A missing link between CVD risk and obesity? Journal of Clinical Endocrinology and Metabolism, 97(5), 731–739.

(13) Wongcharoen, W., & Phrommintikul, A. (2009). The protective role of curcumin in cardiovascular diseases. International Journal of Cardiology, 133(2), 145–51. (15) Yuan, H.-Y., Kuang, S.-Y., Zheng, X., Ling, H.-Y., Yang, Y.-B., Yan, P.-K., … Liao, D.-F. (2008). Curcumin inhibits cellular cholesterol accumulation by regulating SREBP-1/caveolin-1 signaling pathway in vascular smooth muscle cells. Acta Pharmacologica Sinica, 29(5), 555–63.

(14) Vareed, S. K., Kakarala, M., Ruffin, M. T., Crowell, J. A., Normolle, D. P., Djuric, Z., & Brenner, D. E. (2008). Pharmacokinetics of curcumin conjugate metabolites in healthy human subjects. Pharmacokinetics of Curcumin Conjugate Metabolites in Healthy Human Subjects., 17(6), 1411–1417.

(15) Chen, B., Zhang, Y., Wang, Y., Rao, J., Jiang, X., & Xu, Z. (2014). Curcumin inhibits proliferation of breast cancer cells through Nrf2-mediated down-regulation of Fen1 expression. Journal of Steroid Biochemistry and Molecular Biology, 143, 11–18.

(16) Mohammad, P., Nosratollah, Z., Mohammad, R., Abbas, A., & Javad, R. (2010). The inhibitory effect of Curcuma longa extract on telomerase activity in A549 lung cancer cell line. African Journal of Biotechnology, 9(6), 912–919.

(17) Arezoomand, R., Zarghami, N., Rahmati, M., Pourhassan-Moghaddam, M., Nejati-Koshki, K., Delazar, a, … Maleki, M. J. (2010). The inhibitory effect of curcuma longa total extract on telomerase gene expression and activity in MCF-7 breast cancer cell line. Pharmaceutical Sciences, 16(3), 131–138.

(18) Yue, G. G. L., Chan, B. C. L., Hon, P. M., Lee, M. Y. H., Fung, K. P., Leung, P. C., & Lau, C. B. S. (2010). Evaluation of in vitro anti-proliferative and immunomodulatory activities of compounds isolated from Curcuma longa. Food and Chemical Toxicology, 48(8-9), 2011–2020.

(19) Gao, X.-F., Li, Q.-L., Li, H.-L., Zhang, H.-Y., Su, J.-Y., Wang, B., … Zhang, A.-Q. (2014). Extracts from Curcuma zedoaria Inhibit Proliferation of Human Breast Cancer Cell MDA-MB-231 In Vitro. Evidence-Based Complementary and Alternative Medicine: eCAM, 2014, 730678.

(20) Chen, X., Pei, L., Zhong, Z., Guo, J., Zhang, Q., & Wang, Y. (2011). Anti-tumor potential of ethanol extract of Curcuma phaeocaulis Valeton against breast cancer cells. Phytomedicine, 18(14), 1238–1243. H

(21) Lim, C.-B., Ky, N., Ng, H.-M., Hamza, M. S., & Zhao, Y. (2010). Curcuma wenyujin extract induces apoptosis and inhibits proliferation of human cervical cancer cells in vitro and in vivo. Integrative Cancer Therapies, 9(1), 36–49.

(22) Liu, H., Liang, Y., Wang, L., Tian, L., Song, R., Han, T., … Liu, L. (2012). In vivo and in vitro suppression of hepatocellular carcinoma by EF24, a curcumin analog. PloS One, 7(10), e48075.

(23) Chen, H.-W., Lee, J.-Y., Huang, J.-Y., Wang, C.-C., Chen, W.-J., Su, S.-F., … Yang, P.-C. (2008). Curcumin inhibits lung cancer cell invasion and metastasis through the tumor suppressor HLJ1. Cancer Research, 68(18), 7428–7438.

(24) Shishodia, S., Singh, T., & Chaturvedi, M. M. (2007). Modulation of transcription factors by curcumin. Advances in Experimental Medicine and Biology, 595, 127–148

(25) Anand, K., Sarkar, A., Kumar, A., Ambasta, R. K., & Kumar, P. (2012). Combinatorial Antitumor Effect of Naringenin and Curcumin Elicit Angioinhibitory Activities In Vivo. Nutrition and Cancer, 64(5), 714–724.

(26)Binion, D. G., Otterson, M. F., & Rafiee, P. (2008). Curcumin inhibits VEGF-mediated angiogenesis in human intestinal microvascular endothelial cells through COX-2 and MAPK inhibition. Gut, 57(11), 1509–1517.

(27) Ejaz, A., Wu, D., Kwan, P., & Meydani, M. (2009). Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice. The Journal of Nutrition, 139(5), 919–925.

(28) El-Azab, M., Hishe, H., Moustafa, Y., & El-Awady, E. S. (2011). Anti-angiogenic effect of resveratrol or curcumin in Ehrlich ascites carcinoma-bearing mice. European Journal of Pharmacology, 652(1-3), 7–14.

(29) Liu, H., Liang, Y., Wang, L., Tian, L., Song, R., Han, T., … Liu, L. (2012). In vivo and in vitro suppression of hepatocellular carcinoma by EF24, a curcumin analog. PloS One, 7(10), e48075.

(30) Perry, M.-C., Demeule, M., Régina, A., Moumdjian, R., & Béliveau, R. (2010). Curcumin inhibits tumor growth and angiogenesis in glioblastoma xenografts. Molecular Nutrition & Food Research, 54, 1192–1201.

(31) Chen, X., Pei, L., Zhong, Z., Guo, J., Zhang, Q., & Wang, Y. (2011). Anti-tumor potential of ethanol extract of Curcuma phaeocaulis Valeton against breast cancer cells. Phytomedicine, 18(14), 1238–1243.

(32)Kizhakkayil, J., Thayyullathil, F., Chathoth, S., Hago, A., Patel, M., & Galadari, S. (2010). Modulation of curcumin-induced Akt phosphorylation and apoptosis by PI3K inhibitor in MCF-7 cells. Biochemical and Biophysical Research Communications, 394(3), 476–81.

(33) Li, M., Zhang, Z., Hill, D. L., Wang, H., & Zhang, R. (2007). Curcumin, a dietary component, has anticancer, chemosensitization, and radiosensitization effects by down-regulating the MDM2 oncogene through the PI3K/mTOR/ETS2 pathway. Cancer Research, 67(5), 1988–96.

(34) Yallapu, M. M., Jaggi, M., & Chauhan, S. C. (2012). Curcumin nanoformulations: A future nanomedicine for cancer. Drug Discovery Today, 17(1-2), 71–80.

(35) Aratanechemuge, Y., Komiya, T., Moteki, H., Katsuzaki, H., Imai, K., & Hibasami, H. (2002). Selective induction of apoptosis by ar-turmerone isolated from turmeric (Curcuma longa L) in two human leukemia cell lines, but not in human stomach cancer cell line. Int J Mol Med, 9(5), 481–484. Retrieved from

(36) Chauhan, D. P. (2002). Chemotherapeutic potential of curcumin for colorectal cancer. Current Pharmaceutical Design, 8(19), 1695–706.

(37)Hilchie, A. L., Furlong, S. J., Sutton, K., Richardson, A., Robichaud, M. R. J., Giacomantonio, C. a, … Hoskin, D. W. (2010). Curcumin-induced apoptosis in PC3 prostate carcinoma cells is caspase-independent and involves cellular ceramide accumulation and damage to mitochondria. Nutrition and Cancer, 62(3), 379–89.

(38)Jaruga, E., Salvioli, S., Dobrucki, J., Chrul, S., Bandorowicz-Pikuła, J., Sikora, E., … Bartosz, G. (1998). Apoptosis-like, reversible changes in plasma membrane asymmetry and permeability, and transient modifications in mitochondrial membrane potential induced by curcumin in rat thymocytes. FEBS Letters, 433(3), 287–93.

(39) Kuo, C.-L., Wu, S.-Y., Ip, S.-W., Wu, P.-P., Yu, C.-S., Yang, J.-S., … Chung, J.-G. (2011). Apoptotic death in curcumin-treated NPC-TW 076 human nasopharyngeal carcinoma cells is mediated through the ROS, mitochondrial depolarization and caspase-3-dependent signaling responses. International Journal of Oncology, 39(2), 319–28.

(40) Lim, C.-B., Ky, N., Ng, H.-M., Hamza, M. S., & Zhao, Y. (2010). Curcuma wenyujin extract induces apoptosis and inhibits proliferation of human cervical cancer cells in vitro and in vivo. Integrative Cancer Therapies, 9(1), 36–49.

(41) Liu, H., Liang, Y., Wang, L., Tian, L., Song, R., Han, T., … Liu, L. (2012). In vivo and in vitro suppression of hepatocellular carcinoma by EF24, a curcumin analog. PloS One, 7(10), e48075.

(42) Cheng, A. L., Hsu, C. H., Lin, J. K., Hsu, M. M., Ho, Y. F., Shen, T. S., … Hsieh, C. Y. (2001). Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Research, 21(4B), 2895–900.

(43) Garcea, G., Berry, D. P., Jones, D. J. L., Singh, R., Dennison, A. R., Farmer, P. B., … Gescher, A. J. (2005). Consumption of the putative chemopreventive agent curcumin by cancer patients: Assessment of curcumin levels in the colorectum and their pharmacodynamic consequences. Cancer Epidemiology Biomarkers and Prevention, 14(1), 120–125.

(44) Li, M., Zhang, Z., Hill, D. L., Wang, H., & Zhang, R. (2007). Curcumin, a dietary component, has anticancer, chemosensitization, and radiosensitization effects by down-regulating the MDM2 oncogene through the PI3K/mTOR/ETS2 pathway. Cancer Research, 67(5), 1988–96.

(45) Mahady, G. B., Pendland, S. L., Yun, G., & Lu, Z. Z. (2002). Turmeric (Curcuma longa) and curcumin inhibit the growth of Helicobacter pylori, a group 1 carcinogen. Anticancer Research, 22(6C), 4179–4181. Retrieved from

(46) Park, J. H., Park, K. K., Kim, M. J., Hwang, J. K., Park, S. K., & Chung, W. Y. (2008). Cancer chemoprotective effects of Curcuma xanthorrhiza. Phytotherapy Research: PTR, 22(5), 695–698.

(47) Yue, G. G. L., Chan, B. C. L., Hon, P. M., Lee, M. Y. H., Fung, K. P., Leung, P. C., & Lau, C. B. S. (2010). Evaluation of in vitro anti-proliferative and immunomodulatory activities of compounds isolated from Curcuma longa. Food and Chemical Toxicology, 48(8-9), 2011–2020.

(48) Jurenka, J. S., & Ascp, M. T. (2009). Anti- inflammatory properties of curcumin, a major constituent         of Curcuma longa: a review of preclinical and clinical research. Alternative Medicine Review: A Journal of   Clinical Therapeutic, 14(2), 141–53.

(49) Ono, K., Hasegawa, K., Naiki, H., & Yamada, M. (2004). Curcumin Has Potent Anti-Amyloidogenic Effects for Alzheimer’s ??-Amyloid Fibrils In Vitro. Journal of Neuroscience Research, 75(6), 742–750.

(50) Wang, X., Kim, J.-R., Lee, S.-B., Kim, Y.-J., Jung, M. Y., Kwon, H.-W., & Ahn, Y.-J. (2014). Effects of curcuminoids identified in rhizomes of Curcuma longa on BACE-1 inhibitory and behavioral activity and lifespan of Alzheimer’s disease Drosophila models. BMC Complementary and Alternative Medicine, 14(1), 88.

(51) Yang, F., Lim, G. P., Begum, A. N., Ubeda, O. J., Simmons, M. R., Ambegaokar, S. S., … Cole, G. M. (2005a). Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. Journal of Biological Chemistry, 280(7), 5892–5901.

(52) Taylor, M., Moore, S., Mourtas, S., Niarakis, A., Re, F., Zona, C., … Allsop, D. (2011). Effect of curcumin-associated and lipid ligand-functionalized nanoliposomes on aggregation of the Alzheimer’s Aβ peptide. Nanomedicine: Nanotechnology, Biology, and Medicine, 7(5), 541–550.

(53) Ono, K., Hasegawa, K., Naiki, H., & Yamada, M. (2004). Curcumin Has Potent Anti-Amyloidogenic Effects for Alzheimer’s ??-Amyloid Fibrils In Vitro. Journal of Neuroscience Research, 75(6), 742–750.

(54) Giri, R. K., Rajagopal, V., & Kalra, V. K. (2004). Curcumin, the active constituent of turmeric, inhibits amyloid peptide-induced cytochemokine gene expression and CCR5-mediated chemotaxis of THP-1 monocytes by modulating early growth response-1 transcription factor. Journal of Neurochemistry, 91(5), 1199–1210.

(55) Lim, G. P., Chu, T., Yang, F., Beech, W., Frautschy, S. a, & Cole, G. M. (2001). The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 21(21), 8370–8377.

(56) Karlstetter, M., Lippe, E., Walczak, Y., Moehle, C., Aslanidis, A., Mirza, M., & Langmann, T. (2011). Curcumin is a potent modulator of microglial gene expression and migration. Journal of Neuroinflammation, 8(1), 125.

(57) Eckert, G. P., Schiborr, C., Hagl, S., Abdel-Kader, R., Müller, W. E., Rimbach, G., & Frank, J. (2013). Curcumin prevents mitochondrial dysfunction in the brain of the senescence-accelerated mouse-prone 8. Neurochemistry International, 62(5), 595–602.

(58) Cole, G. M., Teter, B., & Frautschy, S. A. (2007). Neuroprotective effects of curcumin. Advances in Experimental Medicine and Biology, 595, 197–212.

(59) Shehzad, A., Rehman, G., & Lee, Y. S. (2013). Curcumin in inflammatory diseases. BioFactors, 39(1), 69–77.

(60) Plummer, S. M., Holloway, K. a, Manson, M. M., Munks, R. J., Kaptein, a, Farrow, S., & Howells, L. (1999). Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-kappaB activation via the NIK/IKK signalling complex. Oncogene, 18(44), 6013–6020.

(61) Chandran, B., & Goel, A. (2012). A randomized, pilot study to assess the efficacy and safety of curcumin in patients with active rheumatoid arthritis. Phytotherapy Research: PTR, 26(11), 1719–25.

(62) Clutterbuck, A. L., Mobasheri, A., Shakibaei, M., Allaway, D., & Harris, P. (2009). Interleukin-1beta-induced extracellular matrix degradation and glycosaminoglycan release is inhibited by curcumin in an explant model of cartilage inflammation. Annals of the New York Academy of Sciences, 1171, 428–35.

(63) Mathy-Hartert, M., Jacquemond-Collet, I., Priem, F., Sanchez, C., Lambert, C., & Henrotin, Y. (2009). Curcumin inhibits pro-inflammatory mediators and metalloproteinase-3 production by chondrocytes. Inflammation Research: Official Journal of the European Histamine Research Society … [et Al.], 58(12), 899–908.

(64) Taty Anna, K., Elvy Suhana, M. R., Das, S., Faizah, O., & Hamzaini, A. H. (2011). Anti-inflammatory effect of Curcuma longa (turmeric) on collagen-induced arthritis: an anatomico-radiological study. La Clinica Terapeutica, 162(3), 201–7.

(65) Sun, J., Zhao, Y., & Hu, J. (2013). Curcumin inhibits imiquimod-induced psoriasis-like inflammation by inhibiting IL-1beta and IL-6 production in mice. PloS One, 8(6), e67078.

(66) Oh, S., Kyung, T.-W., & Choi, H.-S. (2008). Curcumin inhibits osteoclastogenesis by decreasing receptor activator of nuclear factor-kappaB ligand (RANKL) in bone marrow stromal cells. Molecules and Cells, 26(5), 486–489. http://doi.org/147 [pii]

(67) Pan, M. H., Huang, T. M., & Lin, J. K. (1999). Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metabolism and Disposition, 27(4), 486–494.

(68) Vareed, S. K., Kakarala, M., Ruffin, M. T., Crowell, J. A., Normolle, D. P., Djuric, Z., & Brenner, D. E. (2008). Pharmacokinetics of curcumin conjugate metabolites in healthy human subjects. Pharmacokinetics of Curcumin Conjugate Metabolites in Healthy Human Subjects., 17(6), 1411–1417.

(69) Shoba, G., Joy, D., Joseph, T., Majeed, M., Rajendran, R., & Srinivas, P. S. S. R. (1998). Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Medica, 64(4), 353–356.

(70) Antony, B., Merina, B., Iyer, V. S., Judy, N., Lennertz, K., & Joyal, S. (2008). A Pilot Cross-Over Study to Evaluate Human Oral Bioavailability of BCM-95CG (Biocurcumax), A Novel Bioenhanced Preparation of Curcumin. Indian Journal of Pharmaceutical Sciences, 70(4), 445–449.

(71) Cuomo, J., Appendino, G., Dern, A. S., Schneider, E., McKinnon, T. P., Brown, M. J., … Dixon, B. M. (2011). Comparative absorption of a standardized curcuminoid mixture and its lecithin formulation. Comparative Absorption of a Standardized Curcuminoid Mixture and Its Lecithin Formulation., 74(4), 664–669.

(72) Marczylo, T. H., Verschoyle, R. D., Cooke, D. N., Morazzoni, P., Steward, W. P., & Gescher, A. J. (2007). Comparison of systemic availability of curcumin with that of curcumin formulated with phosphatidylcholine. Cancer Chemotherapy and Pharmacology, 60(2), 171–177.

(73) Shaikh, J., Ankola, D. D., Beniwal, V., Singh, D., & Kumar, M. N. V. R. (2009). Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. European Journal of Pharmaceutical Sciences, 37(3-4), 223–230.

(74) Sasaki, H., Sunagawa, Y., Takahashi, K., Imaizumi, A., Fukuda, H., Hashimoto, T., … Morimoto, T. (2011). Innovative preparation of curcumin for improved oral bioavailability. Biological & Pharmaceutical Bulletin, 34(5), 660–665.

(75) Schiborr, C., Kocher, A., Behnam, D., Jandasek, J., Toelstede, S. and Frank, J. (2014), The oral bioavailability of curcumin from micronized powder and liquid micelles is significantly increased in healthy humans and differs between sexes. Mol. Nutr. Food Res., 58: 516–527. doi: 10.1002/mnfr.201300724